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Abstract. With the rapid development of sensor networks, machine vision faces the problem of storing and
computing massive data. The human visual system has a very efficient information sense and computation
ability, which has enlightening significance for solving the above problems in machine vision. This review
aims to comprehensively summarize the latest advances in bio-inspired image sensors that can be used to
improve machine-vision processing efficiency. After briefly introducing the research background, the relevant
mechanisms of visual information processing in human visual systems are briefly discussed, including layer-
by-layer processing, sparse coding, and neural adaptation. Subsequently, the cases and performance of
image sensors corresponding to various bio-inspired mechanisms are introduced. Finally, the challenges
and perspectives of implementing bio-inspired image sensors for efficient machine vision are discussed.
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1 Introduction
Machine vision is multifunctional and can be applied in manu-
facturing processes to improve efficiency. In typical machine
vision systems, visual perception functions occur in the analog
domain, while signals are processed in the digital domain
through the von Neumann computing architecture.1 In this
architecture, the sensing, storage, and computing units are
separated. To complete an operation, data need to be converted
and transmitted among different units. In this process, a large
amount of redundant data is generated, resulting in a waste
of time and storage space. With the rapid development of sensor
networks, it is an urgent task to remove redundant data and
improve the processing efficiency of sensor systems. Based on
traditional computational frameworks, a great deal of work has
been utilizing novel algorithms to compress image data and per-
form complex processing tasks.2–5 However, the training and

development of these algorithms are often complex and require
a lot of time and resources. Optimization from the software side
alone seems to be far from enough. To further improve comput-
ing efficiency, joint optimization of hardware and software is
needed.

The processing of information by the human visual system
begins with light signals on the retina and finishes up at the out-
put with the identities and spatial relationships of the objects in
the visual scene. The human visual system uses an initial stage
of data compression in the retina, which removes much of the
redundant data.6 With the help of neural adaptation, the retina
can not only collect information with a high dynamic range but
also eliminate noise and redundant data.7,8 After the retinal con-
version and preprocessing, the visual information is encoded
into a series of nerve spike signals that can be processed by
the subsequent visual centers.9–11 These spikes are believed to
be a key factor in humans’ ability to process large amounts
of visual information with low power consumption. Spikes from
the retina are transmitted to the lateral geniculate nucleus, the
first cortical visual area (V1), and other areas, including V2,
V3, middle temporal (MT), V4, and inferotemporal cortex.
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These different layers of visual centers are used to analyze as-
pects such as motion, stereo, and color. In particular, different
levels of visual centers do not process visual information strictly
in chronological order. Thanks to the neural network connection
of different functional regions, the multilevel visual centers
can process and integrate information in parallel and finally
let the brain get the visual information in the scene quickly
and accurately. The high efficiency of the human visual system
is inseparable from the strong ability of the center at all levels to
analyze specific information such as motion, stereo, and color.
In general, neural adaptation, sparse coding, and layer-by-layer
processing mechanisms play a decisive role in the efficient com-
pression and parallel processing of visual information and are
also the key learning directions of image sensors for efficient
machine vision. By mimicking the human visual system, numer-
ous new bio-inspired image sensors have emerged in recent
years. Through the improvement of architecture, information
coding mechanism, and neural adaptation, these image sensors
have excellent visual information compression capabilities and
can be used to solve some high-level visual tasks, improving
information processing efficiency (Fig. 1).12–15

This review summarizes the recent progress in the field of
bio-inspired image sensors. The novel image sensors are ana-
lyzed from the perspectives of innovative architectures, sparse
coding mechanisms, and neural adaptation. Section 2 briefly
introduces the biological structure of the human visual system
and related mechanisms of information compression processing.
Section 3 summarizes the research progress of bio-inspired
image sensors for efficient machine vision, including innova-
tive sensory architecture, sparse coding mechanisms, and neural
adaptation in image sensors. Section 4 concludes the review by
highlighting the outstanding challenges and perspectives related
to the subjects under debate.

2 Information Processing in the Human
Visual System

Humans can quickly sense and respond to changes in the envi-
ronment while consuming very little energy due to the special
structure and processing mechanisms of the visual system.
Research on human vision has been carried out for many years.

Although the complex structure, specific coding mechanisms,
and neural properties of the human visual system are not fully
understood, the existing biological research results can provide
enlightening thinking and design basis for image sensors. As
Fig. 2 shows, the components of the human visual pathway
are relatively complex. In simple terms, information is mainly
received through the eyes and then transmitted to specific areas
of the brain through a series of optic nerves. Through neural
adaptation mechanism and sparse coding mechanism, visual in-
formation will be extracted and converted into low-redundancy
spike trains, which will be transmitted to the subsequent visual
center for processing, and the brain will finally integrate the in-
formation of various parts and reconstruct the original image.
Section 2 briefly describes the structure of the human visual sys-
tem, the process of visual information processing, and internal
mechanisms.

2.1 Layer-by-Layer Processing in the Human Visual
System

Visual information is not simply transported mechanically from
the eyes to the brain; the processing of visual information starts
at the sensing end, and it is processed hierarchically when trans-
mitted in the visual pathway, greatly reducing the burden on the
visual cortex of the brain. The retina, lateral geniculate nucleus,
and visual cortex play a key role in the visual pathway. The hu-
man retina is a thin layer of brain tissue in the eye and provides
neural processing for photoreceptor signals.16 The retina can not
only convert the external light-intensity information into nerve
signals that can be transmitted but also perform certain informa-
tion preprocessing functions, including the extraction of charac-
teristic information such as color and shape and the filtering of
redundant information.17 Effective feature information is even-
tually output from the retina in the form of spikes.18 Then, the
lateral geniculate nucleus classifies the different features of the
retinal output and sends them to the corresponding functional
areas in the visual cortex. Finally, specific visual tasks can be
completed through the selective integration of feature informa-
tion by the visual cortex of the brain.19 Overall, the human visual
system divides complex visual tasks into various levels of the
center, and after each level of the center, the information will

Fig. 1 Comparison between bio-inspired and traditional image sensors.
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be effectively compressed, thus improving the processing effi-
ciency of the whole system.

2.2 Sparse Coding

Theoretical studies suggest that the retina and brain use a sparse
code to efficiently represent natural scenes. Retina output is de-
termined by the patterns of spikes produced by retinal ganglion
cells. These spike patterns encode all visual information avail-
able to the rest of the visual system. The information transmitted
by the neuron is contained in the temporal sequence of these
spikes, the “spike train.” The relationship among spike trains
forms the “neural code” (Ref. 9). Over the years, a range of
different paradigms for neural code have been developed. Rate
encoding and temporal encoding are the two main encoding
schemes.20 The most fundamental formulation of sparse coding
is that a single neuron transmits information by the number of
spikes produced over an extended temporal period.21 Sparse
coding is computationally efficient for both early vision and
advanced visual processing. It allows for increased storage
capacity in associative memories and makes the structure of
natural signals explicit.11 By representing complex data in a way
that they are easier to read out at subsequent levels of process-
ing, in general, sparse coding reduces the overall neural activity
required to represent information.

2.3 Neural Adaptation

Neural adaptation refers to the common phenomenon of a de-
cline in neuronal activity in response to repeated or prolonged
stimulation. Neural adaptation is observed along the neuronal
pathway from the sensory periphery to the motor output, and
adaptation generally becomes stronger at higher levels. Neural
adaptation has a typical high-pass filtering property, and the
low-frequency stimulus component is gradually weakened by
adaptive dynamics. Neural adaptation is also reflected in the
adaptive adjustment of stimulus mean and variance. In a natural
scene, the photoreceptor conversion light intensity is not con-
stant but fluctuates continuously over different time scales
and within certain distributions of intensity levels. The human
visual system adjusts to changes in average stimulus levels and
higher-order statistics in the environment. The final signal trans-
mitted to the brain is not the intensity of the original image, but
the local differences in space and changes in time. This strategy

is also known as predictive coding, which can greatly compress
visual information.8 Adaptive mechanisms provide a rich toolkit
for the nervous system to perform computations.22

3 Bio-Inspired Image Sensors for Efficient
Machine Vision

The core mechanism of efficient processing of visual informa-
tion in the human-vision system can be used in machine vision
to guide the design of new image sensors to compress image
information and improve computing efficiency. The following
sections (Secs. 3.1–3.3) will introduce the applications of bio-
inspired layer-by-layer processing mechanisms,23 sparse coding
mechanisms,24 and neural adaptation in image sensors (Fig. 3).25

The layer-by-layer processing mechanism can decompose the
complex tasks that are only completed by the computing unit,
complete some processing at the sensing and storage ends, and
reduce the load of the computing unit, improving the overall
efficiency. The sparse coding mechanism can achieve dimen-
sionality reduction and compression of data, relieve the storage
pressure, and facilitate the subsequent signal processing.
Adaptive mechanisms help the vision system capture critical
dynamic information and eliminate interference from back-
ground noise and static redundant information. In general, the
framework of layer-by-layer processing has a clear division of
labor, ensuring that the human visual system can efficiently pro-
cess complex visual tasks. The sparse coding mechanism is a
“bridge” connecting all levels in the layer-by-layer processing
framework and transmits the low-redundancy visual information
to the corresponding functional area. Neural adaptation is an
important biological basis for sparse coding, which can effec-
tively filter out a lot of redundant information. To improve
processing efficiency, machine vision must not only imitate the
computing framework of the human visual system on the macro
level but also learn the acquisition and coding mechanism of
visual information on the micro level.

To find out how bio-inspired vision can operate as efficiently
as human vision, we compared the human-vision system with
the bio-inspired vision system, as shown in Table 1. Imaging and
signal transmission are not the main factors restricting informa-
tion processing in bio-inspired vision systems. The development
of new neuromorphic image sensors and the construction of
artificial neural networks (ANNs) are complicated parts of bio-
inspired vision, especially the former. The combination of

Fig. 2 Diagram of human visual information processing.
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neuromorphic image sensors and artificial neural network has
become a common working mode of bio-inspired vision sys-
tems. Most of the studies of the three mechanisms described
in this section worked in this way.

3.1 Layer-by-Layer Processing Image Sensors

Common visual sensors such as charge-coupled device arrays
and complementary metal-oxide-semiconductor (CMOS) arrays
need to be combined with a series of storage and computing
units to complete complex information processing.26,27 The
transmission and storage of redundant data require a lot of time
and space, which also increases the processing difficulty of
the end computing units. In recent years, researchers have made

great efforts to optimize the structural design of sensing and
computing systems, and some computing tasks are transferred
from computing units to sensing and storage units. According to
the relative spatial location relationship between the processing
unit and the sensors, the new sensing system can be divided into
processing near- and in-sensor architecture.28,29

In near-sensor architecture, the sensor pixel array is physi-
cally separated from the processing unit but simultaneously con-
nected in parallel on a chip. The processing units are close to the
sensors, and some specific computing tasks can be done near the
sensor.30 At present, the common near-sensor architecture in-
cludes omitting analog-to-digital conversion for signal process-
ing in the analog domain or omitting the transmission step
between the memory unit and the processing unit and directly

Table 1 Comparison of human and bio-inspired vision systems.

Functions Components of the human visual system Bio-inspired vision system

Imaging Eye Optical lens

Signal conversion and coding Neuromorphic image sensors

Signal transmission Optic nerve Transmission units

Interpreting visual information Visual centers ANNs

Fig. 3 Bio-inspired image sensors for efficient machine vision. Adapted with permission from
Refs. 23–25.
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performing operations in the memory unit. Chen et al.31 pro-
posed processing near-sensor architecture in a mixed-signal
domain with a CMOS image sensor (CIS) of the convolutional-
kernel-readout method [Fig. 4(a)]. The visual data in this study
are collected from intelligent CIS, and the output of the CIS is
processed directly by the analog processing unit located near
the CIS, unconstrained by the digital clock and analog-to-
digital converter (ADC) bottlenecks. The proposed sensing chip
achieves an energy efficiency of up to 545.4 GOPS/W with a
20 MHz control clock while consuming 1.8 mWof power. This
group also proposed a current-mode computation-in-memory
(CIM) architecture enabling near-sensor processing for intel-
ligent internet of thing (IoT) vision nodes. Current mode com-
puting technology was utilized in this work to achieve high
energy efficiency while eliminating data conversion overhead
[Fig. 4(b)].32 They fabricated a 2-kbit CIM macro in the pro-
posed architecture, achieving a 60.6-TOPS/Wenergy efficiency.

In general, the development trend of new sensing systems is
more compact, faster, and smarter. Processing in-sensor archi-
tecture means that some of the processing tasks are shifted
to sensors, reducing data conversion and movement.35 By
essentially eliminating all the parts between the sensor and
the processing unit, the processing in-sensor architecture can
achieve better computing efficiency than the near-sensor archi-
tecture. Based on traditional CMOS sensors, Xu et al.36 demon-
strated a 32 × 32 processing-in-sensor prototype with a 180-nm
CMOS process. Their chip can accomplish MNIST data set
(a public database of handwritten digits that is commonly used
for training various image processing systems) classification
with an accuracy of 93.76%. The energy efficiency of their chip
is 13.1 times that of the state-of-the-art work. In addition to
superior energy efficiency, the processing in-sensor architecture
can also accurately perform high-level processing tasks while
greatly reducing the amount of information. Wang et al.33 devel-
oped an optoelectronic in-sensor compression and computing
system to mimic the human visual system [Fig. 4(c)]. They
used an indium–gallium–zinc–oxide (IGZO) phototransistor to
achieve in-sensor compression and computing. The switching
characteristics of the phototransistor are the key to forming
the compression measurement matrix in the sensor. Figure 4(d)
shows the results of single pulse-switching characteristics of
the light potentiation and electrical depression. They combined
the phototransistor arrays with a reservoir computing (RC)
network for signal recognition. The results reveal that even for
cases where the signal is compressed by 50%, the recognition
accuracy of the reconstructed signal still reaches around 96%
[Fig. 4(e)]. In addition to the relatively simple recognition
and classification of static images, more complex moving object
detection and recognition can also be realized in sensors. Zhang
et al.34 presented a retina-inspired two-dimensional (2D) heter-
ostructure-based hardware device with all-in-one perception,
memory, and computing capabilities for the detection and rec-
ognition of moving trolleys [Fig. 4(f)]. The device in this work
has continuous and progressive adjustable non-volatile positive
and negative photoconductivity characteristics, which can truly
simulate the signal reception, conversion, and processing in the
retina. Through the interframe difference calculation, the device
successfully implemented 100% separation detection of moving
trichromatic trolleys without ghosting.34 The way to achieve a
layer-by-layer processing mechanism in machine vision is to
assign more computing tasks to sensors and storage units. The
rapid development of in-memory computing37,38 and in-sense

computing39,40 neuromorphic devices has enriched the functions
of layer-by-layer processing mechanisms and promoted machine
vision to approach or even surpass human vision.

3.2 Sparse Coding Image Sensors

Sparse coding extracts relevant information from high-dimen-
sional external stimuli and reduces the data dimension through
specific coding rules, thus achieving overall data compression.
An important prerequisite for data compression based on sparse
coding is to have devices similar to synapses and neurons.
Previously, researchers had used traditional CMOS technologies
to mimic biological synapses and neurons. Still, the problems
were that the circuit needed a lot of transistors and the area
of the circuit was very large. To simplify the circuit structure
and reduce the circuit scale, it is expected to realize synaptic
and neuronal functions at the device level. Many kinds of spike
signal artificial neural devices have been studied based on differ-
ent design principles. Han et al. reviewed the function and prin-
ciple of different kinds of artificial neural devices, including
single transistors, memristors, phase-change memory, magnetic
tunnel junction (MTJ), and the leaky ferroelectric field-effect-
transistor (FeFET).41–48 These photoelectric neurons are the
basic units of the computing system within the sensor, which
can directly perceive and preprocess visual information.

Nonlinear responses to external stimuli are the key to real-
izing sparse representation. Sun et al.49 demonstrated a neuro-
morphic vision system that encodes ambient light intensity and
captures optical images by encoding their pixel intensity into
spike signals in real time [Fig. 5(a)]. In this work, metal oxide
photonic synapses with rich dynamics and nonlinearity are used
as neuromorphic image sensors. The photonic synapse responds
to the light pulse signal and generates postsynaptic photo-
current. The light intensity information of the input pattern is
converted into a series of electrical pulses by a sensor oscillation
circuit [Fig. 5(b)]. The electrical output of each photonic
synaptic device presents a weighted value proportional to the
frequency of the optical input, which is the basis for extracting
external light-intensity information from the sensor [Fig. 5(c)].
The array system based on the photonic synapses integrates
image perception, storage, and preprocessing and demon-
strates dynamic perception and dynamic storage. Sparse cod-
ing can be used for the dynamic processing of temporal and
sequential information and is essential for advanced applica-
tions of machine vision. Sun et al.50 demonstrated that a 2D
memristor based on tin sulfide (SnS) realizes the computation
of the sensor memory repository for language learning, using
the high-dimensional storage characteristics of sparse coding.
Spatiotemporal optoelectronic inputs are applied to the mem-
ristors in the array, as schematically illustrated by the pulses
(electrical spikes) and discrete optical beam trains (optical
spikes) in Fig. 5(d). Such sequential optoelectronic inputs
can generate numerous (high-dimensional and dual-mode)
reservoir states of RC. By matching the optical input to the
current of the memristor, the photoelectric RC system realizes
the classification learning of five actual Korean sentences
[Figs. 5(e) and 5(f)]. The sparse representation in the vision
sensor can effectively transform the complex information of
the external environment into electrical pulse signals that are
easy to store and process, and greatly reduce the computational
network complexity of the subsequent execution of advanced
vision tasks.
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Fig. 4 Bio-inspired sensory architectures. (a) The overview of processing near-sensor architec-
ture system without ADC. Reproduced with permission from Ref. 31. (b) CIM near-sensor
architecture. Reproduced with permission from Ref. 32. (c) Schematic of IGZO phototransistor
array to realize in-sensor compression simulation. Reproduced with permission from Ref. 33.
(d) Optical enhancement and electrical suppression of IGZO phototransistors. Reproduced
with permission from Ref. 33. (e) The recognition accuracy of MNIST images reconstructed
with different sampling rates. Reproduced with permission from Ref. 33. (f) 2D retinomorphic
device structure and motion detection of trichromatic trolleys. Reproduced with permission
from Ref. 34.
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3.3 Neural Adaptation Image Sensors

In machine-vision application scenarios such as drone detection
and security monitoring, most of the static information is redun-
dant, and only a small amount of dynamic information is truly
valuable. Traditional cameras or visual sensors only mechani-
cally record the information of all pixels in a period. When the
number of cameras is large or the recording time is long, the
amount of data generated is very large. In human vision, due

to the neural adaptation mechanism described in Sec. 2, a large
amount of redundant information is filtered out, and only the
useful response changes in the temporal domain or spatial
domain are recorded and used for subsequent processing. This
way of recording changes is called event-driven. Event-driven
sampling offers several advantages over its conventional frame-
based counterparts, including lower power requirements, lower
data volume, wider dynamic range, and shorter latency times
[Fig. 6(a)].51 Liu et al.55 showed that using event-based vision

Fig. 5 Novel sensory devices based on sparse coding. (a) Light stimulus-induced spike trains.
Reproduced with permission from Ref. 49. (b) Image recognition using photosensor-multivibrator
circuit and photonic synapse. Reproduced with permission from Ref. 49. (c) Spike-number-depen-
dent amplitude variation of excitatory postsynaptic current (ΔEPSC) triggered by a train of optical
spikes. Reproduced with permission from Ref. 49. (d) Schematic of a multifunctional memristor
array stimulated by various electrical and optical inputs. Reproduced with permission from Ref. 50.
(e) Read-current responses of a memristor by several optical input signals. Reproduced with per-
mission from Ref. 50. (f) The operation of optoelectronic RC based on 2D SnS memristors for clas-
sifying consonants and vowels in the Korean alphabet. Reproduced with permission from Ref. 50.
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sensors leads to reduced recording data remarkably. A 1-kfps
(fps, frames per second) image sensor would produce about
3 × 108 frames or 5 TB of data from the equivalent resolution
128 × 128 pixels sensor. However, the dynamic vision sensors
(DVSs) in this work only recorded 74 MB of 4-byte event data,
which is a factor of 67,000 times fewer data.55 Vitale et al.56 first
used spiking neural network (SNN) on the chip to solve a high-
speed unmanned aerial vehicle (UAV) control task. The event-
based vision sensors in this work can achieve up to 3 orders of
magnitude better speed versus power consumption trade-off in
high-speed control of UAVs compared with conventional image
sensors.56 Event-based sensors differ from conventional imaging

systems in that each pixel contains electronics that allow asyn-
chronous operation. However, since the output of the event cam-
era is composed of a series of asynchronous events rather than
actual intensity images, it is not possible to apply traditional
vision algorithms for image reconstruction, so a paradigm shift
is required. Rebecq et al.57 proposed an event-based multiview
stereo image reconstruction scheme that is very computationally
efficient and can be run in real time on the central processing
unit (CPU). Although DVS has greatly reduced the data volume
by converting continuous signal inputs into sparse event out-
puts, the resulting spike data still face transmission and storage
difficulties. Zhu et al.58 proposed a unified lose-spike coding

Fig. 6 Neural adaptation sensors for visual compression. (a) Event-driven sampling and frame-
based sampling. Reproduced with permission from Ref. 51. (b) CSDVS pixel circuit. Reproduced
with permission from Ref. 52. (c) Comparison of simulated normal DVS and CSDVS response to a
flashing spot. Reproduced with permission from Ref. 52. (d) Illustration of a machine vision system
based on the MoS2 phototransistor array. Reproduced with permission from Ref. 53. (e) Light- and
dark-adapted mechanisms of the In2O3 transistor. Reproduced with permission from Ref. 54.
(f) Electrical enhancement and light-depression function of an In2O3 transistor. Reproduced with
permission from Ref. 54.
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framework, which for the first time uses motion patterns hidden
in the distribution of spike data to design motion-fidelity coding
patterns. The proposed method can further effectively compress
the spike data while maintaining visual fidelity.58 Dong et al.59

proposed a cube-based spike coding framework for DVSs.
Based on representing spatial and temporal information as spike
signals to compress sensory signals, they further compressed
the spike data. The average data compression achieved by this
method is 2.6536 times that of the raw spike data, and the effect
is far better than the traditional lossless coding algorithm.

Temporal event-based sensors can greatly reduce the amount
of data in dynamic monitoring scenarios and achieve temporal
domain compression. However, the spatial resolution of this
kind of sensor is insufficient. Each pixel generates a spike re-
sponse to the external light-intensity change independently, and
the lack of position correlation among pixels results in a lot of
redundant intensity information or noise in space. The human-
vision system can achieve signal compression in the spatial do-
main through the center-surround structure in the lateral direc-
tion of the retina. To realize spatial information preprocessing,
researchers first modified and upgraded the relatively mature
silicon-based sensors and added pixel circuits with specific
functions. Many imaginative silicon vision sensors employ tran-
sistor-based spatial and spatiotemporal filtering in the focal
plane.60–62 These devices had complex pixels and lots of transis-
tor mismatch, which produced much fixed-pattern noise (FPN)
in the output. As Fig. 6(b) shows, Delbruck et al.52 proposed
a compact and energy-efficient center surround dynamic vision
sensor (CSDVS) design. The CSDVS pixel would use ∼10
fewer large analog transistors and provide a surround with a
controllable size. Thus, the CSDVS design is feasible with a
modest increase in pixel complexity. Combined with switching
capacitance DVS change detection, FPN is also expected to be
much less than in past center-surround silicon retinas. Ordinary
DVS will produce ON and OFF events in the whole point but
will not produce ON and OFF events outside the point [Fig. 6(c)].
However, CSDVS only generates events at the edge of the
scene. At the center of the spot, the surrounding environment
responds almost equally to the photoreceptor, thus suppressing
events from this homogeneous region. As a result, CSDVS will
amplify high spatial frequencies and significantly reduce DVS
activity in uniformly and smoothly changing regions of the
scene. Spatial domain and temporal domain compressions of
visual information are not discrete, and in the actual application
of machine vision, spatial compression and temporal compres-
sion are both necessary.

In addition to being event-driven, the human-vision system
can also quickly adapt to changes in ambient light intensity, and
this adaptive property is also important in the field of machine
vision. Adapting to brightness changes helps to improve the per-
ception of the visual system, which is more sensitive to detect
faint changes. Liao et al.53 demonstrated bio-inspired vision sen-
sors that are based on molybdenum disulfide (MoS2) phototran-
sistors. Their MoS2 phototransistor arrays exhibit the adaptive
capabilities of the human eye, sensing images over a wide range
of brightness and achieving contrast enhancement [Fig. 6(d)].
This work is expected to be applied to the field of machine
vision, simplifying circuits, and processing algorithms.53 Jin
et al.54 demonstrated an array of In2O3 transistors with negative
photoconductivity properties, which provide a new way to cre-
ate an environmentally adaptive artificial visual perception sys-
tem [Fig. 6(e)]. Figure 6(f) shows the electrical enhancement

and light-depression function of an In2O3 transistor, which
can be turned on with an electrical pulse and turned off by a
light reset. In different external lighting environments, the de-
vice self-adapts and adjusts the threshold within a certain range
to obtain visual perception.

3.4 Summary of Basic Principles of Bio-Inspired Image
Sensor

In conventional architectures [Fig. 7(a)], the analog sensory data
are first converted to digital signals using ADC and then tem-
porarily stored in memory before being sent from memory to
processing units. This data conversion and transmission-based
approach results in inefficient power use and high latency. In a
near-sensor computing architecture [Fig. 7(b)], processing units
or accelerators reside beside sensors and execute specific compu-
tational tasks at sensor endpoints, providing an improved sensor/
processor interface and thus minimizing the transfer of redundant
data. In the in-sensor computing architecture [Fig. 7(c)], indi-
vidual self-adaptive or multiple connected sensors can directly
process sensory information, eliminating the sensor/processor
interface and combining the sensing and computing functions.63

Image sensing and processing in conventional linear re-
sponse and sparse coding are schematically shown in Fig. 8.64

In a conventional linear response image sensing system (e.g.,
a digital camera), the light-intensity distribution at the image
sensor surface is converted linearly to an electronic signal (e.g.,
charge or current) and then processed and stored as a digital
photo. Usually, this kind of data is redundant. Sparse represen-
tation reduces the complexity of the input signals and enables
more efficient processing and storage, as well as improved
feature extraction and pattern recognition functions. Given a
signal x, which may be a vector (e.g., representing the pixel
values in an image patch), and a dictionary of features D,
the goal of sparse coding is to represent x as a linear combina-
tion of features fromD using a sparse set of coefficients a, while
minimizing the number of features used. The objective of sparse

Fig. 7 Basic principles of layer-by-layer processing sensors.
(a) Conventional computing architectures. (b) Near-sensor
computing architecture. (c) In-sensor computing architecture.
Reproduced with permission from Ref. 63.
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coding can be summarized mathematically as minimizing an
energy function, defined as

minaðjx −DaT j2 þ λjaj0Þ; (1)

where j · j2 and j · j0 are the L2- and the L0-norm, respectively.
Here, the first term measures the reconstruction error, which is
the difference between the original signal x and the sparse rep-
resentation DaT , while the second term measures the sparsity,
which is reflected by the number of active elements used to
reconstruct the input. Unlike many compression algorithms
that focus on reconstruction error only, sparse coding algo-
rithms reduce the complexity by assuming that real signals

lie in only a few dimensions (of a high-dimensional space)
and attempt to find an optimal representation that also reduces
dimensionality. As a result, sparse coding not only enables
a more efficient representation of the data but may also be
more likely to identify the “hidden” constituent features of
the input and thus can lead to improved data analyses such as
pattern recognition.

Neural adaptation processing allows the implementation of
the Bayesian theories, where prior sensory experiences and
current sensory input are used to compute the posterior percep-
tual estimation, that is, the prediction. At each processing
layer, sensors subtract this prediction from the sensory data and
register the residual by a “prediction error” signal (Fig. 9).25

Fig. 9 Basic principles of neural adaptation sensors. Reproduced with permission from Ref. 25.

Fig. 8 Basic principles of sparse coding sensors. (a) Conventional linear response image sensing
principle. (b) Image sensing and sparse coding principle.
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In this sense, it is not necessary for an expected event to transmit
to the final processing area. Instead, only the information that
deviates from predictions is further processed and passed up-
ward to the higher-order area in the form of an “error.” The
greater the prediction error, the larger the sensor response
evoked. This prediction error signal propagates through an as-
cending pathway and updates the subsequent prediction.25 When
the prediction eventually matched with the sensory input, the
sensor activity induced by prediction error would be suppressed.
Through the above algorithm logic, the sensing system can
finally adapt to environmental factors and improve its response
to environmental changes.

4 Conclusion and Perspectives
In the field of machine vision, the traditional vision computing
architecture suffers from the transmission, storage, and compu-
tation of redundant data. Inspired by the efficient processing
mechanism of the human-vision system, the new bio-inspired
image sensors can effectively compress redundant data through
layer-by-layer processing, sparse coding, and neural adaptation
mechanisms to improve the computational efficiency of ma-
chine vision.

In this review, we discussed the recent advances in bio-
inspired sensors for efficient machine vision. First, novel vision
sensors based on layer-by-layer processing mechanisms are pre-
sented, covering the architecture of such sensors and the visual
computing tasks that can be performed. Second, the high-
dimensional data compression capability of sparse coding and
its hardware implementation cases are exhibited. Third, the prin-
ciples and functions of event-driven vision sensors and adaptive
vision sensors inspired by neural adaptation are introduced in
detail.

Despite considerable progress in the bio-inspired image sen-
sors for efficient visual processing, many challenges remain to
be addressed. The bio-inspired image sensor is an interdiscipli-
nary project, involving biology, system architecture, integrated
circuits, materials, devices, algorithms, and fabrication technol-
ogies. This field is in the early stages of development, and there
are still many limitations. At the architectural level, process
near-sensor and in-sensor architectures are demanding for inte-
gration technologies. Sensing, storage, and computing units that
were originally separate are now highly integrated into a single
micro-device, and it is very challenging to complete the process-
ing and integration of various heterogeneous materials in a tiny
area. In terms of coding and information-processing mecha-
nisms, emerging algorithms must be developed to cooperate
with hardware systems for high-level information processing.
Although current ANNs can solve simple image processing
problems, their efficiency decreases, and energy consumption
increases when faced with complex tasks.

For the materials, 2D materials have outstanding advantages
in spatial-temporal responses and are expected to be applied in
the design of vision sensors.65,66 However, 2D materials are still
in the exploration stage, the existing 2D material transfer tech-
nology is inefficient, and the technical requirements for opera-
tors are very high, which greatly limits the wide application
of 2D materials. Perovskite materials are also highly expected
due to their excellent photoelectric properties. Perovskite mate-
rials have unique advantages compared with 2D materials.
Perovskite materials have a direct optical bandgap, which is
independent of material thickness, and therefore have a high
absorption coefficient and quantum efficiency. In addition, the

simple and low-cost preparation of perovskite materials makes
the application prospects brighter.67–72 2D and perovskite mate-
rials with excellent photoelectric properties are undoubtedly
promising, but the problems of preparation and preservation
need to be solved. In addition, sensor arrays are generally re-
quired in practical application scenarios, so how to solve the
uniformity problem of emerging materials is also an inevitable
challenge.

In the long run, machine vision should approach and surpass
the processing efficiency of human vision. However, the current
bio-inspired vision sensors can only realize one or two efficient
mechanisms of layer-by-layer processing, sparse coding, and
neural adaptiveness, and it is difficult to efficiently complete
complex vision tasks. Therefore, the future bio-inspired vision
system needs to consider how to integrate multiple processing
mechanisms, enrich the processing content of visual information,
and improve the processing efficiency of visual information.
The improved bio-inspired vision systems are expected to be
compatible with use in real-time and low-power visual percep-
tion applications and with numerous possible applications, such
as driverless cars, smart surveillance, and intelligent healthcare.
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